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Abstract Flood exposure is increasing in coastal communities due to rising sea levels. Understanding the
effects of sea level rise (SLR) on frequency and consequences of coastal flooding and subsequent
social and economic impacts is of utmost importance for policymakers to implement effective adaptation
strategies. Effective strategies may consider impacts from cumulative losses from minor flooding as
well as acute losses from major events. In the present study, a statistically coherent Mixture
Normal‐Generalized Pareto Distribution model was developed, which reconciles the probabilistic
characteristics of the upper tail as well as the bulk of the sea level data. The nonstationary sea level condition
was incorporated in the mixture model using Quantile Regression method to characterize variable
Generalized Pareto Distribution thresholds as a function of SLR. The performance validity of the
mixture model was corroborated for 68 tidal stations along the Contiguous United States (CONUS) coast
with long‐term observed data. The method was subsequently employed to assess existing and future
coastal minor and major flood frequencies. The results indicate that the frequency of minor and major
flooding will increase along all CONUS coastal regions in response to SLR. By the end of the century,
under the “Intermediate” SLR scenario, major flooding is anticipated to occur with return period less than a
year throughout the coastal CONUS. However, these changes vary geographically and temporally. The
mixture model was reconciled with the property exposure curve to characterize how SLR might influence
Average Annual Exposure to coastal flooding in 20 major CONUS coastal cities.

1. Introduction

The global mean sea level (MSL) has been increasing over the past decades (IPCC, 2014). The rate of sea level
rise (SLR) is anticipated to continue to accelerate globally and regionally over the 21st century (Howat et al.,
2007; Rahmstorf, 2007; Sweet et al., 2017). Consequently, many coastal regions will be increasingly exposed
to frequent coastal flood inundation (Walsh et al., 2014). Coastal communities are particularly vulnerable to
SLR due to risks from acute storm surge as well as chronic tidal flooding events. The implications of SLRmay
include increases in severity and frequency of coastal flooding (Rahmstorf & Coumou, 2011; Ray & Foster,
2016), posing enormous socioeconomic implications in coastal cities (Aerts et al., 2014; Hallegatte et al.,
2013; Hinkel et al., 2013). Thus, a coherent assessment of the chronic and acute impacts of SLR on coastal
flooding is vital for security of coastal communities.

SLR reduces the freeboard between high water levels (either from tide or storm surge) and local flood thresh-
olds, causing to increase the frequency of both minor (Dahl et al., 2017; Moftakhari et al., 2015; Sweet et al.,
2014; Vandenberg‐Rodes et al., 2016) andmajor (Ezer & Atkinson, 2014; Kemp&Horton, 2013; Vousdoukas
et al., 2017) coastal flood events. Thus, quantification of risks from coastal flooding under nonstationary sea
level conditions must reconcile the effects of both minor and major floods. Development of effective
adaptation and mitigation strategies must take into account the cumulative losses from frequent smaller
high‐water levels (i.e., minor flooding) as well as acute losses from less frequent extreme high‐water levels
(i.e., major flooding). A challenge, however, is the inadequacy of widely used probability models in simulta-
neous characterization of both minor and major flooding under higher MSLs.

Literature is replete with probabilistic methods to characterize the likelihood of major flooding under non-
stationary condition. Chief among these approaches is the nonstationary Generalized Extreme Value (GEV)
distribution and Generalized Pareto Distribution (GPD). Nonstationarity of sea level conditions is typically
taken into account by time‐dependent distribution parameters for GEV (Boettle et al., 2013; Menéndez &
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Woodworth, 2010; Obeysekera et al., 2013; Salas & Obeysekera, 2014) or
GP (Kyselý et al., 2010; Méndez et al., 2006) distributions. The increasing
frequency of minor flooding due to SLR has motivated several recent stu-
dies (Dahl et al., 2017; Moftakhari, AghaKouchak, et al., 2017; Sweet et al.,
2014, 2018). However, most of these previous studies model minor and
major flood events separately.

Two important considerations must be addressed to fully characterize
acute and chronic flooding risks in a statistically rigorous manner under
nonstationary condition. First, using time as a covariate in nonstationary
probability models poses planning and management challenges since
future SLR projections are fraught with uncertainty. Considerable scienti-
fic discourse still remains how to statistically detect SLR acceleration over
time (Haigh et al., 2014; Nicholls & Cazenave, 2010). Moreover, local fac-

tors such as land subsidence, changes in ocean circulation, and groundwater pumpingmay also considerably
alter the rate of SLR in a region (Konikow, 2011; Ezer et al., 2013). In addition, selecting a meaningful SLR
scenario is not a straightforward task, and several factors should be weighed by policymakers and coastal
planners to select an appropriate SLR such as the decision type, planning horizon, and overall risk tolerance
(Hall et al., 2016; Sweet et al., 2017). Thus, since extreme sea level data are correlated with MSL (Tebaldi
et al., 2012), nonstationarity may be addressed in terms of changing in MSL instead of time.

Further, Extreme Value (EV) distributions are commonly used to characterize the tail of water level data
(Menéndez et al., 2008; Niroomandi et al., 2018; Noto & La Loggia, 2009; Roth et al., 2012; Xu & Huang,
2008). However, with higher sea levels, current local flood thresholds are likely to be exceeded more fre-
quently during average high tides. Flood events that are currently characterized as infrequent and aremostly
modeled by the upper tail of the sea level distribution will become more frequent with SLR and will not be
rare events anymore. Thus, in the absence of coastal adaptationmeasures, water level exceedances above the
current flood threshold cannot be characterized using models that characterize only the upper tail of the
water level distribution. This limitation impedes full characterization of risks from coastal flooding under
nonstationary sea level conditions. Thus, requisite to a full characterization of flood risks is an approach that
reconciles the probabilistic characteristics of the upper tail as well as the bulk of the sea level distribution
(Stephens et al., 2018).

This study develops a statistically coherent nonstationary mixture probability model for sea water levels to
facilitate coastal flood frequency analysis. Specifically, the objectives of the study are to (1) develop and cor-
roborate a nonstationary Mixture Normal‐GPD probability model with changes in MSL as the covariate; (2)
evaluate current and future coastal flood return periods for regions along the coastal Contiguous United
States (CONUS); (3) investigate changes in the frequency of minor andmajor coastal flooding for the stations
along the coastal CONUS; and (4) quantify current and future exposure to coastal flooding in 20 coastal cities
in the CONUS. The new mixture probability model enhances the capacity to simultaneously investigate
minor andmajor coastal flooding frequency under future SLR scenarios. The study also investigates the time
to anticipated SLR levels on a decadal basis.

2. Materials and Methods

Current local flood thresholds will be exceeded more frequently under higher MSL, which can ultimately
result in inadequacy of the extreme value distributions (Figure 1). We developed a nonstationary Mixture
Normal‐GPD model to enable full characterization of coastal flood frequency with SLR as the covariate.
In the mixture model, the Normal distribution describes the bulk of daily maximum sea levels, while GPD
characterizes the upper tail of the data. Nonstationarity was incorporated by expressing the location para-
meters of both Normal distribution and GP distribution as a function of SLR. The model was corroborated
for 68 tidal monitoring locations along the coastal CONUS with long‐term observed water level data. We
used the mixture probability model to assess the effects of SLR on future coastal flood frequency along the
coastal CONUS. Subsequently, we reconciled the model with exposure curve for coastal assets (i.e., property
value of buildings) in 20 coastal cities to quantify the Average Annual Exposure (AAE) of assets to minor and

Figure 1. Schematic of changes in water level probability distributionwith a
δ increase in mean sea level.
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extreme coastal flooding over a range of SLR levels. Finally, recent regional SLR projections were used to
investigate how far in the future changes in frequency of coastal flooding may be realized.

2.1. Tidal Stations, Study Cities, and Projected SLR Scenarios

We used three sets of data in this study to estimate current and future coastal flood frequency and conduct
property exposure analysis along the coastal CONUS. First, we used hourly observed sea level data from 68
stations with at least 30 years of data to develop and corroborate the mixture probability model. These sta-
tions are located along CONUS coasts, including northeast Atlantic, southeast Atlantic, Gulf, and Pacific
coasts. The data represent Still Water Elevation, which encompass both tide and storm components. All
the hourly observed water level data are relative to the latest National Tidal Datum Epoch, which references
the 1983–2001 period with mean higher high water (MHHW) as the tidal datum except the data from two
stations along the Gulf coast (Grand Isle and Rockport tidal stations), which are on the modified epoch.
We modified the hourly time series that correspond to these two stations to take the sea level data back onto
the 1983–2001 epoch (Sweet et al., 2018).

Second, we selected 20 populated cities along the coastal CONUS, which cover a variety of geographic
coastal regions (five cities in each coastal region). All of the cities are highly exposed areas to coastal flooding
in terms of infrastructure and other properties. For each city, we used cumulative property exposure values
that correspond to water level above MHHW from risk finder tool (https://riskfinder.climatecentral.org)
provided by Climate Central (2016). We obtained the property exposure values for 10 different water level
values (i.e., 1 to 10 ft above MHHW). Exposure values between these data points were modeled by a
linear function.

Third, we used two regional SLR projections to perform a decadal assessment of expected time to certain
changes in MSLs by 2100. We selected the “Intermediate Low” scenario, which corresponds to 0.5‐m global
SLR with 73% chance of being exceeded under Representative Concentration Pathway (RCP) 4.5 climate
change scenario. We simulated more accelerated SLR conditions using the “Intermediate” scenario with
1‐m global SLR and 17% chance of being exceeded under RCP 8.5 climate change scenario (Kopp et al.,
2014; Sweet et al., 2017). Antarctic ice sheet instability could transition to more extreme scenarios (i.e.,
Intermediate‐High, High, and Extreme) later in the century. However, those outcomes are less likely to
occur. Thus, the results of the present study may be deemed as plausible but conservative estimates
compared to other extreme SLR scenarios.

2.2. Minor, Moderate, and Major Coastal Flooding Classification

To secure public safety and take steps to increase coastal cities preparedness level, three “official” coastal
flood thresholds have been established by National Oceanic and Atmospheric Association (NOAA). Minor
flooding (i.e., exceedances over minor flood threshold) refers to events that can cause minimal damage with
public threat and inconvenience. Moderate coastal flooding (i.e., exceedances over moderate flood thresh-
old) has relatively considerable damages to private and commercial property. Major flooding (i.e., excee-
dances over major flood threshold) is destructive and can cause extensive losses to life and property.
These thresholds are defined observationally during flooding events and are available for less than half of
NOAA tide gauges in the CONUS (NOAA, 2014).

A recent study done by Sweet et al. (2018) found a common pattern between all official NOAA coastal flood
thresholds based on the local tide range such that in the most cases minor, moderate, and major coastal
flooding begin about 0.5, 0.8, and 1.2 m above the local diurnal tide range. Consequently, they estimate a
“derived” set of flood threshold based on the statistical relationship (regression‐based) for nearly all stations
along the coastal CONUS. In this study, we used these set of derived coastal flood thresholds for each station
as an approximation of minor, moderate, and major flooding thresholds, which are spatially consistent and
can provide national coverage (Sweet et al., 2018).

2.3. Mixture Normal‐GPD Probability Model

We developed a nonstationary mixture model that simultaneously characterize the bulk and upper tail of the
sea water level distribution. The six parameter models represent extreme values by a GPD and bulk data by a
Normal distribution. We estimated the parameters of the mixture model for the 68 tidal monitoring stations
along the coastal CONUS.
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2.3.1. Extreme Value Analysis
Extreme Value Analysis is commonly used to characterize extreme events with two primary methods for
selecting extremes: peak over threshold and block maxima method (e.g., annual maxima). The block max-
ima approach and corresponding probability models such as the GEV distribution can only consider one
event per block (e.g., year). However, coastal flooding, particularly minor flooding events, may occur with
multiple occurrences in a year (Moftakhari et al., 2015; Ray & Foster, 2016). Hence, we used the peak over
threshold method in the current study to consider multiple events per year. In this approach, a threshold is
determined to describe statistical properties of events that exceed the threshold over a given period of time.
The cumulative distribution (G) of the independent exceedances above the threshold follow the GPD which
is given by (Coles, 2001)

Gu;α;ξ xð Þ ¼ Pr X≤xjX>uð Þ ¼ 1− 1þ ξ
x−u
α

� �−
1
ξ if ξ≠0

1− exp −
x−u
α

� �
if ξ ¼ 0

8>>><
>>>:

; (1)

where u, α, and ξ denote the location, scale, and shape of the GPD distribution.
2.3.2. Mixture Normal‐GPD Distribution
The bulk of daily maximum sea level closely follows a Normal distribution (Sweet & Park, 2014). Thus, using
the idea of extreme value mixture model (Behrens et al., 2004), the GPDmodel for the data above the thresh-
old is mixed with a Normal distribution for the data below the threshold to derive a single‐spliced distribu-
tion that coherently characterizes probability density of the entire range of sea level data. The cumulative
distribution function of the mixture model is defined as (MacDonald et al., 2011)

F xjμ; σ;u;α; ξ;φð Þ ¼ 1−φð Þ N xj μ; σð Þ
N uj μ; σð Þ if x<u

1−φð Þ þ φG xju;α; ξð Þ if x≥u

8<
: ; (2)

where N(x|μ, σ) and G(x| u, α, ξ) are the Normal and conditional GPD cumulative distribution functions,
respectively. Variables μ and σ represent mean and standard deviation of the Normal distribution, and φ
denotes the probability of independent exceedances over threshold. Variable φ is the ratio of number of clus-
ters above threshold to the total number of observations (Coles, 2001). We used the Maximum Likelihood
Estimation (MLE) in MATLAB (MathWorks®) to estimate parameters of the mixture model for the study
locations.

2.4. Characterization of Nonstationary Sea Water Level

The effects of SLRmust be considered in both components of theMixture Normal‐GPDmodel. Hence, in the
proposed approach, the location parameter of the Normal distribution (μ) and the location parameter of the
GPD (u) are expressed as functions of changes in MSL (δ). Climate change may also beget changes in stormi-
ness of events (i.e., the frequency and intensity of storms) that cause coastal flooding (Wolf & Woolf, 2006)
leading to changes in other parameters (e.g., scale and shape parameter) of water level distribution (Arns
et al., 2017; Devlin et al., 2017; Wahl, 2017). However, the changes in storminess were not included in this
study for two reasons: (1) previous studies have observed that SLR has more immediate threat for the
increase in exceedances over flood thresholds than possible changes in storm variability (Church et al.,
2013; Sweet & Park, 2014; Tebaldi et al., 2012); (2) although increase in storminess could change extreme
events accompanied with storm surge, as sea levels rise, most of coastal floodings start at normal high tides,
with no additional effect of severe weather such as storm or hurricane. The approach assumes that SLR will
shift the current sea level distribution toward higher water level without any deformation of the distribution
(Le Cozannet et al., 2015; Mudersbach & Jensen, 2010; Tebaldi et al., 2012). Thus, no additional covariate
dependency was assumed for scale parameter of Normal component as well as scale and shape parameters
of the GP component.

The location parameter of GPD may be represented by either choosing a constant or a variable threshold.
When a constant threshold is used, exceedances of the threshold occur more frequently in future years,
which may violate the assumption of extreme value analysis (Coles, 2001). Hence, we computed a variable
GPD threshold using Quantile Regression method (Koenker & Hallock, 2001; Kyselý et al., 2010). The
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analysis determines the relationship between daily MSL (independent variable) and daily maximum sea
level (response variable) data. Daily MSLs (DMSL) were computed from the linear model fitted to the
daily sea levels (i.e., daily time series of mean of hourly observed water levels; Figure 2, left panel). The
linear model (Yellow line) was used instead of daily MSL time series, which was computed from the
mean of daily values for 1‐year overlapping windows centered at the indicated day (Red line), to remove
the noise component in the time series and avoid having sample variability. We assume DMSL
correspond to 183rd day of the year 2017 as current DMSL and present all the computed DMSLs as sum
of current DMSL and changes in MSL (DMSLcurrent + δ). Eventually, we calculated the GPD variable
threshold as the 97% (Méndez et al., 2006; Sweet et al., 2014) quantile regression assuming linear
dependence between daily maximum sea level and DMSL (Figure 2, right panel). The nonstationary
characterization of GPD threshold includes two components and is a function of changes in MSL (δ)
according to the following equation:

u ¼ u δð Þ ¼ β1 DMSLcurrent þ δð Þ þ β0 ¼ β1δ þ β0 þ β1×DMSLcurrentð Þ; (3)

where u denotes the value of the variable GPD threshold, DMSLcurrent represents the daily MSL correspond-
ing to the current (i.e., reference) year, β1 and β0 denote the slope and intercept coefficients of the quantile
regression model, and δ represent change in MSL from the current level. Year 2017 is used as the reference
year in the study. The quantile regression coefficients are assumed to remain constant over the range
of MSLs.

The estimated slope coefficient (β1) indicates the rate of change in the GPD threshold, which is used to char-
acterize extremes, with changes in MSL.When β1 is greater than 1, the changes in extreme values are greater
than changes in MSL itself. Conversely, a β1 value less than 1 points to smaller changes in extremes relative
to changes in MSL.

The MLE technique requires independent observations of extremes for robust estimation of GPD para-
meters. Thus, a minimum time interval between water level extremes (i.e., threshold exceedances) must
be identified such that the resulting sequences are statistically independent. In the current study, we
employed a minimum of 3‐day runs (Méndez et al., 2006; Sweet et al., 2014). The maximum of successive
extremes within each cluster was used to estimate GPD parameters (Figure 2, right panel).

Similarly, the nonstationary component for the bulk of the distribution is incorporated by changing the loca-
tion parameter of the Normal component of the distribution as follows:

μ ¼ μ δð Þ ¼ μ0 þ δ; (4)

where μ0 represents the estimated Normal distribution location parameter computed from historical daily
maximum sea level.

2.5. Coastal Flood Frequency and Amplification Factor

The relation between coastal flood level and return period will change under nonstationary conditions
(Church et al., 2006; Lin et al., 2012), and subsequently, the frequency of exceedance of a given flood

Figure 2. (left) Daily mean sea level calculated using linear function fitted to the daily sea levels, (right) Variable thresh-
old estimated using Quantile regression method and independent excesses over threshold (Battery [NY] tidal station).
MHHW = mean higher high water.
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threshold will increase (Dahl et al., 2017). The annual frequency (expected number of days per year) of
exceedances above coastal flooding thresholds (ne) can be obtained from the mixture probability model as
follows:

ne ¼ 1
T
¼

ny 1−
1−φð Þ

1þ erf
u−μ
σ

ffiffiffi
2

p
� � 1þ erf

x−μ
σ

ffiffiffi
2

p
� �� �2

664
3
775

0
BB@

1
CCA x<u

φny 1þ ξ
x−u
α

� �−
1
ξ x≥u

8>>>>>>>><
>>>>>>>>:

; (5)

where T denotes the return period, ny is the number of observations per year, and erf is the error function.

While the frequency of coastal flooding increases with SLR, changes in the frequency of minor and major
flooding may not be the same everywhere. Thus, the effect of SLR on changes in frequency of minor and
major flooding across coastal regions in the CONUS were assessed using the flood frequency amplification
factor (AF), which is defined as the ratio of current to future return period of a given water level under a spe-
cific SLR (Buchanan et al., 2017):

AF ¼ T0 xð Þ
Tδ xð Þ ; (6)

where T0(x) is the current return period of water level (x), and Tδ(x) is the return period of water level (x)
under a δ increase in MSL.

2.6. AAE to Coastal Flooding

Flood risk computation involves quantification of flood probability, assets (or other values) at risk, and vul-
nerability (Kron, 2005; Merz et al., 2010). A widely used risk indicator for flood risk assessment is the
Average Annual Losses (Kron, 2005; Purvis et al., 2008). However, in this study, we used the exposure values
as an approximation of damages due to many uncertainties in estimating damages across different types of
flooding, especially indirect losses in the case of minor flooding. Thus, we estimated AAE of property to
“minor” and “moderate and major” coastal flooding in 20 major CONUS coastal cities. Here we use the term
“extreme” flooding to refer to moderate and major flooding since both flooding categories can cause consid-
erable damage to property (NOAA, 2014). AAE to minor and extreme (i.e., moderate and major) flooding is
determined by

AAE Extreme ¼ ∫
1−F Moderate Flood Thresholdð Þ
0 ny*E F−1 1−pð Þ� �

dp; (7a)

AAE Minor ¼ ∫
1−F Minor Flood Thresholdð Þ
1−F Moderate Flood Thresholdð Þny*E F−1 1−pð Þ� �

dp (7b)

where E denotes the exposure function, and p represents the sea level exceedance probability. The AAE to
minor and major flooding was computed for 20 cities along the coastal regions in CONUS for various
SLR levels.

3. Results

The study reveals that minor andmajor flood frequencies generally increase as sea level rises; however, these
changes vary geographically along the coastal CONUS.Major flood frequency amplification is primarily gov-
erned by the value of shape parameter. In regions with negative or close to zero shape parameter (i.e., Pacific
and Southeast Atlantic coasts), major flood frequency amplification is more sensitive to SLR and is higher
than minor flood frequency amplification. On the contrary, locations with large positive shape parameter
(i.e., Gulf and northeast Atlantic coasts) are anticipated to be exposed to higher frequency amplification
in minor flooding. Considering regional SLR projections, events currently classified as major flooding are
anticipated to occur with return period less than a year in all stations by the end of the century under
Intermediate SLR scenario.

10.1029/2018EF001089Earth's Future

GHANBARI ET AL. 167



3.1. Parameters of the Mixture Model by Region

The mixture model parameter values for all 68 tidal stations were estimated using the MLE method and are
summarized in supporting information Table S1. The GPD shape parameter governs the qualitative behavior
of GPD distribution (Coles, 2001). When the shape parameter is positive (ξ > 0), the distribution is heavy‐
tailed and has no upper bound. Conversely, when ξ < 0, the distribution is thin‐tailed and has upper limit
equal to xmax ¼ u− α

ξ .

The estimated shape parameters for the stations along the coastal CONUS reveal important regional patterns
(Figure 3). Figure 3 (right panel) presents the boxplot of GPD shape parameters in each region. From this
boxplot, it can directly be observed that locations along Gulf and Pacific coasts have the highest and lowest
GPD shape parameter, respectively, and the median is almost equal to zero for stations along the southeast
Atlantic coasts. The shape parameters for stations along the Pacific coast region are negative ranging
between −0.02 and −0.1 or highly negative with values less than −0.1. These stations historically do not
experience tropical cyclone or hurricanes and have a very narrow continental shelf that limits storm surge
potential. On the other hand, stations along the Gulf and northeast Atlantic regions are exposed to tropical
cyclones and strong winter storms, respectively. The shape parameter for these stations is highly positive
with values more than 0.1 or positive ranging between 0.02 and 0.1. Stations along southeast Atlantic region
experience differing degrees of exposure to tropical storms with the shape parameter approximately zero
with values in the range of −0.02 to 0.02. It is clear that different experience among stations in terms of his-
torical exposure to extreme flooding can be reflected by GPD shape parameter (Buchanan et al., 2017).

Local characteristic of tidal stations could also affect the value of GPD
shape parameter. For example, KeyWest and Vaca Key (Florida Keys) sta-
tions, which are located close to the margins of continental shelf zones,
similar to the situation along the Southwestern Pacific coast, tend to be
exposed to lower surge compared to stations that are located behind the
wide shelves. Moreover, stations close to estuaries may be also exposed
to relatively high storm surge or large riverine inputs (e.g., Washington
DC station; Tebaldi et al., 2012).

The sensitivity of major flood frequency amplification to the shape para-
meter over a range of SLR levels is illustrated in Figure 4. Other para-
meters of the distribution and Quantile Regression coefficients were
kept constant at u0 = 1.8; α = 0.4; μ0 = 0; σ = 0.8; φ = 0.02; β1 = 1;
β0 = 7. Generally, frequency amplification of major flooding is inversely
related to the value of shape parameter. As shape parameter increases,
major flooding frequency amplification tends to be smaller for changes
in MSL. This response is governed by the effects of shape parameter on
the tail of sea level distribution and the frequency of extreme flood levels.
Distributions with ξ > 0 have relatively high frequency of extreme flood

Figure 3. (left) Geographical distribution of Generalized Pareto Distribution shape parameter. (Right) Boxplot of
Generalized Pareto Distribution shape parameter (Q1, Q2, and Q3 indicate lower quartile, median, and higher quartile,
respectively, and n denotes the number of stations).

Figure 4. Sensitivity of major flood frequency amplification with SLR and
the distribution shape parameter. SLR = sea level rise.
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levels, while distributions with ξ < 0 have an upper bound of extreme flood levels. When shape factor is
highly negative, for example, for locations where currently major flooding does not occur or is highly
unlikely, very large frequency amplifications may be computed.

Conversely, minor flooding frequency amplification is not sensitive to the value of shape parameter. The
minor flood threshold typically is not located at the tail of the GPD and is not governed by shape parameter.

3.2. Current and Future Coastal Flooding Return Period

Changes in the return period of future coastal flooding were assessed under different SLR levels in the study
locations. The median of these changes by coastal regions is summarized in Figure 5. Figures S2e to S69e
provide the results of the analysis for each station. Generally, future return periods will become shorter as
the sea level rises. A significant change is determined for study sites in the Pacific region. For example,
500‐year flood will become a 10‐year, yearly, and monthly flood under 0.5‐, 1‐, and 2‐ft SLR, respectively.
However, these changes in flood return period do not necessarily indicate higher exposure and risks in
the future since return period alone does not provide sufficient information for risk management policies
(Tebaldi et al., 2012). For example, the flood levels for the current 100‐year event is about 3 ft for regions
along the Pacific coast, posing little flood risks.

Tomake this point clearer, Figure 6 depicts the estimated future return period for prevailing 100‐year coastal
flooding events under 0.5‐ft (left panel) and 2‐ft (right panel) SLR levels. Locations along the Gulf region will
experience the highest 100‐year depth. On the contrary, the smallest 100‐year flood depths are estimated for
locations along the Pacific coast, which historically have not been exposed to hurricane and tropical cyclone.
A relation is evident between the future return period and current 100‐year return level (Tebaldi et al., 2012),

Figure 5. Current versus future coastal flood return period (Median value for each region). SLR = sea level rise.

Figure 6. Future 100‐year flood return period classified by current 100‐year flood depth. The size and color represent the
“Future return period” and the “depth” of current 100‐year flood, respectively. SLR = sea level rise.
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which express that changes in return period alone does not provide sufficient information for risk
management policies.

3.3. Current and Future Frequency of Minor and Major Coastal Flooding

For more practical use of future return period, we calculated the frequency of minor andmajor flooding (i.e.,
exceedances over derived minor and major flood thresholds, respectively) for each station under current and
future MSL values. Generally, as sea levels rise, the likelihood of flooding increases should the local flooding
thresholds remain constant (Dahl et al., 2017; Kruel, 2016). Figure 7 (top panels) shows estimated future
return period for major flooding events, under the current MSL, 1‐ft, and 2‐ft SLR. Under the current con-
dition, major flooding events occur along the Gulf and northeast Atlantic coasts with a return period less
than 100 years. With 1‐ft SLR, the large majority of locations (except locations along the southwest Pacific
with no exceedances above major flood threshold) tend to be exposed to major flooding with a return period
of 1–20 years. Under 2‐ft SLR, should no interventions be implemented, major flooding will become com-
monplace with multiple annual occurrences in most of the CONUS coastal regions.

Annual Frequency (i.e., expected annual number of exceedances) of minor flooding is presented in Figure 7
(bottom panels). Annual frequency of minor flooding was computed instead of return period since multiple
minor flooding events may occur within in a year (i.e., return period less than 1 year). Results show that
minor flooding currently occurs with the expected number of 1 to 20 days/year in most stations along the
Atlantic, Gulf, and Northwest Pacific coasts. Under the current MSL, the least frequency of exceedances is
realized with expected annual exceedances of less than 1 day for stations along the southwest Pacific coast

Figure 7. (top panels) Return period of major coastal flooding; (bottom panels) expected annual frequency of minor coastal flooding. MSL = mean sea level;
SLR = sea level rise.
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as well as the southwestern coast of Florida. However, 1‐ft SLR will culminate in increased frequency of
minor flooding to 20–50 days/year in a majority of the study locations. With no adaptations or
interventions, 2‐ft SLR will result in more than 150 days of minor flooding per year in all the locations.

3.4. Frequency Amplification of Minor and Major Coastal Flooding

Although the frequencies of minor and major flooding are forecasted to increase as a result of SLR, changes
in their frequencies are not the same across regions. Thus, frequency amplification of minor and major
coastal flooding was calculated for all sites to assess the effect of SLR on changes in the frequency of minor
and major flooding separately across different coastal regions (Figure 8).

The frequency amplification of major flooding in the locations along the northwest Pacific will increase sub-
stantially with 1‐ft SLR. Although the region is not historically exposed to major flooding, the major flood
threshold is anticipated to be exceeded by return period of less than 10 years under 1‐ft increase in the
MSL. With 2‐ft SLR, major flood frequency amplification in southwest Pacific will also increase with more
than three orders of magnitude. Thus, SLR 2 ft above the current MSL will beget striking amplification of
major flooding frequency in all locations along the Pacific and southeast Atlantic. With 0.5‐ft SLR, minor
flood will become more frequent by up to tenfold in all stations, except those located along southwest
Pacific coast and Florida Keys stations with an estimated two orders of magnitude increase. Under 1‐ft
SLR, the highest amplification in minor flooding (more than 500 times) was found in Florida Keys stations.

We calculated the ratio of major flood frequency amplification to minor flood frequency amplification to
investigate patterns of change in flood frequency with SLR in the study regions. Results indicate varying
trends by locations across the coastal CONUS (Figure 9). The frequency amplification of minor flooding is
higher thanmajor flooding in most of the study locations up to 1‐ft SLR except locations along the northwest
Pacific coast. Under 2‐ft SLR, the frequency of major flooding will be amplified at higher rates in locations

Figure 8. (top panels) Major flood frequency amplification; (bottom panels) minor flood frequency amplification. SLR = sea level rise.
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along the Pacific and southeast Atlantic coasts. Minor flooding frequency, on the other hand, tends to be
higher along the Gulf and northeast Atlantic coasts. Thus, as sea level rises locations that historically are
not exposed to major flooding are expected to experience higher frequency amplification in major
flooding. Coastal areas with considerable historical major flooding will be likely exposed to higher
frequency amplification in minor flooding.

3.5. Regional SLR Scenarios for the United States

Observed and projected acceleration of SLR varies regionally across the coastal CONUS. Consequently, the
indicated SLR levels in this study are expected to be realized over different time horizons in different coastal

Figure 9. The ratio of frequency amplification of major to minor flooding. SLR = sea level rise.

Figure 10. The decade when indicated sea level rise values are anticipated to occur under Intermediate Low and Intermediate sea level rise scenarios
(Sweet et al., 2017).
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locations. Different SLR projections have been derived based on alternative climate scenarios although con-
siderable debate still remains about the acceleration of SLR (Dangendorf et al., 2017; Haigh et al., 2014).
Figure 10 (adapted from Sweet et al., 2017) illustrates the decade when the indicated SLR (0.5, 1, and 2 ft)
is anticipated to occur under Intermediate Low and intermediate SLR scenarios.

The expected time to frequent destructive major floods with return period of 1 year under Intermediate Low
and Intermediate SLR scenarios is illustrated in Figure 11. Under the Intermediate‐Low scenario (left panel),
most of the stations (except stations along the west of the Gulf coast) will not experience yearly major flood-
ing by the end of the century. However, under the Intermediate scenario, major flooding will occur one or
more times a year by approximately 2050–2060 in stations along the western Gulf and mid‐Atlantic coasts,
2070–2080 in stations along southeast Atlantic (Except Florida Keys) and some stations along the northwest
Pacific, and 2080–2090 in Florida Keys and stations along the southwest Pacific coasts. In general, under the
Intermediate scenario, events that are currently characterized as major flooding are anticipated to occur
with return period less than a year in all stations by the end of the century.

3.6. AAE to Coastal Flooding

The AAE to minor and extreme flooding (i.e., Moderate and major flooding) for 20 populated coastal cities in
the CONUS was computed under current condition and three different SLR levels (Figure 12). The AAE to
both minor and extreme flooding is the highest in the New York City. Although the AAE currently is not a
major concern for Miami, with 2‐ft SLR, Miami will encompass the second highest value of assets exposed to
minor and extreme coastal flooding. This response can be attributed to less extreme water‐level variance in
the Key West station (Church et al., 2013; Hunter, 2012), which is the closest station to Miami in this study.

The ratio ofAAE to minor flooding to totalAAEwas calculated to explore regional trends in the contribution
of each coastal flood category (Figure 13). Under prevailingMSL, extreme coastal flooding accounts for more
than 50% of total AAE in the cities along the Gulf and northeast Atlantic (e.g., New Orleans and New York
City). Minor flooding, however, contributes to more than 50% of total AAE in the study cities along the
southeast Atlantic and Pacific (e.g., Jacksonville and Los Angeles). Under smaller amounts (up to 1 ft) of
SLR,AAEwill be primarily fromminor flooding in all study cities. However, extreme flooding will dominate
the coastal flooding AAE in most of the CONUS cities for SLR exceeding 2 ft.

These responses can be explained by the components of the mixture probability model. With no rise in MSL,
the tail of the sea level distribution (i.e., GPD) governs the contributions from both minor and extreme flood-
ing. Thus, in locations with a positive GPD, shape parameter contributions from acute AAE to extreme
events exceed chronic AAE to minor flooding (i.e., cities along the Gulf coast). On the other hand, cumula-
tive AAE from minor flooding is the dominant component of total AAE in the study locations with negative
GPD shape parameters (i.e., cities along the Pacific coast) due to the thin‐tailed distribution. With relatively

Figure 11. The decade when events currently characterized as major flooding are anticipated to occur with return period
less than a year.

10.1029/2018EF001089Earth's Future

GHANBARI ET AL. 173



small increases (e.g., up to 1 ft) in MSL, a substantial increase in annual exposure to minor flooding is
evident. With up to 1‐ft SLR, minor flood threshold in all study cities will be smaller than the GPD
threshold, and thus, exceedances of the minor flood threshold will be governed by the bulk of the Mixture
distribution (i.e., Normal distribution component). Conversely, with SLR above 2 ft, moderate and major
flood thresholds will also be shifted to the bulk of the water level distribution, which will lead to a greater
portion of AAE from extreme flooding events.

Minor flooding can cause considerable indirect damages to assets and economic activities in cities, such as
business interruption, road closure, traffic disruptions, economic losses, public inconvenience, and long‐
term chronic degradation of infrastructure from increasing inundation of saltwater (e.g., Moftakhari et al.,
2018; Sweet et al., 2014). We do not consider these impacts in the current study. Moreover, repeated events

Figure 12. The Average Annual Exposure to minor and extreme flooding in 20 coastal cities along the coastal Contiguous
United States. SLR = sea level rise.

Figure 13. The ratio of AAE to minor flooding to total AAE for Contiguous United States coastal regions. AAE = Average
Annual Exposure; SLR = sea level rise.
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of exposure to coastal flooding are assumed to be independent. Thus, the AAE used in this study may be
viewed as a worst case risk estimate and is likely substantially larger than Average Annual Losses
(Hallegatte et al., 2013). Detailed damage and restoration functions may be considered when actual losses
are computed using the proposed mixture probability model and risk analysis approach. The nonstationary
mixture model improves the capability to assess increasing coastal flood risks due to SLR. However, climate
change may alter weather conditions that influence increased risks of pluvial flooding from heavy precipita-
tion (Moftakhari, Salvadori, et al., 2017; Wahl et al., 2015) in addition to storm surge. Further theoretical
development is needed to reconcile these compounding effects in the analysis of risks to assets and commu-
nities in coastal region.

4. Conclusions

A nonstationary Mixture Normal‐GPD probability distribution was developed to model coastal flooding fre-
quency over a range of SLR levels. The model facilitates a coherent assessment of coastal flooding exposure
to extreme events as well as minor but more frequent events. The model was parameterized for 68 tidal mon-
itoring stations along the coastal CONUS. The results show a good fit between the model and observed sea
level data in all study locations. Regional trends are evident in the estimated values of the mixture model
parameters. Particularly, the distribution shape parameter, which governs the qualitative behavior of the
models and risks to both chronic and acute flooding hazards, showed strong regional trends.

Model assessments reveal that all regions across coastal CONUS will experience significant increases in fre-
quency of minor and major flooding over a range of future SLR levels. Under higher SLR scenarios (e.g., 2‐ft
SLR), infrequent major flooding is likely to occur multiple times per year in the majority of stations along
Atlantic, Gulf, and northwest Pacific coasts. Similarly, minor flooding with exceedances of more than
150 days/year may also occur in most of the study locations. However, the frequency amplification of minor
and major flooding varies by coastal regions. Pacific coast regions should expect the highest major flood fre-
quency amplification followed by regions within the southeast Atlantic coast. These regions, especially
within the Pacific coast, are most vulnerable to the amplification of major flooding frequency since under
current MSL, the major flood threshold is rarely or never exceeded. On the contrary, the Gulf and northeast
Atlantic coastal regions are likely to be exposed to higher frequency amplification in minor flooding.

Flood frequency amplification would exacerbate inundation impacts over time and cause a considerable
increase inAAE of property to coastal flooding.While the communities have primarily focused onmitigating
acute damages from extreme events, under smaller amounts of SLR (i.e., up to 1 ft), the AAE to minor flood-
ing will exceed those from extreme events in a majority of CONUS coastal regions. However, AAE will be
mainly from extreme flooding should SLR exceed 2 ft.

The time to specific SLR scenarios varies regionally and by future climate scenarios. Subsequently, risks
from minor and extreme coastal flooding will be influenced by these considerations. Planning and design
of effective coastal flooding solutions must incorporate both chronic and acute risks fromminor and extreme
events from SLR. The mixture probability model and the coastal property exposure analysis presented in this
study facilitate full characterization of risk mitigation strategies by representing their effects on flood thresh-
olds in coastal regions. These solutions may include engineering solutions such as higher sea walls and for-
ward pumps or management solutions such as spatial zoning regulations and buildings codes. The analysis
indicates that adaptation strategies must account for increasing frequency of unprecedented major flooding
in the Pacific and southeast Atlantic regions. In the Gulf and northeast Atlantic coasts, effective infrastruc-
tural, policy, and management strategies may also target enhanced long‐term service reliability of flood con-
trol systems and their resiliency to the amplification of minor flooding.
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